Use of Raman Spectroscopy and Phase-Contrast Microscopy To Characterize Cold Atmospheric Plasma Inactivation of Individual Bacterial Spores.

نویسندگان

  • Shiwei Wang
  • Christopher J Doona
  • Peter Setlow
  • Yong-Qing Li
چکیده

UNLABELLED Raman spectroscopy and phase-contrast microscopy were used to examine calcium dipicolinate (CaDPA) levels and rates of nutrient and nonnutrient germination of multiple individual Bacillus subtilis spores treated with cold atmospheric plasma (CAP). Major results for this work include the following: (i) >5 logs of spores deposited on glass surfaces were inactivated by CAP treatment for 3 min, while deposited spores placed inside an impermeable plastic bag were inactivated only ∼2 logs in 30 min; (ii) >80% of the spores treated for 1 to 3 min with CAP were nonculturable and retained CaDPA in their core, while >95% of spores treated with CAP for 5 to 10 min lost all CaDPA; (iii) Raman measurements of individual CAP-treated spores without CaDPA showed differences from spores that germinated with l-valine in terms of nucleic acids, lipids, and proteins; and (iv) 1 to 2 min of CAP treatment killed 99% of spores, but these spores still germinated with nutrients or exogenous CaDPA, albeit more slowly and to a lesser extent than untreated spores, while spores CAP treated for >3 min that retained CaDPA did not germinate via nutrients or CaDPA. However, even after 1 to 3 min of CAP treatment, spores germinated normally with dodecylamine. These results suggest that exposure to the present CAP configuration severely damages a spore's inner membrane and key germination proteins, such that the treated spores either lose CaDPA or can neither initiate nor complete germination with nutrients or CaDPA. Analysis of the various CAP components indicated that UV photons contributed minimally to spore inactivation, while charged particles and reactive oxygen species contributed significantly. IMPORTANCE Much research has shown that cold atmospheric plasma (CAP) is a promising tool for the inactivation of spores in the medical and food industries. However, knowledge about the effects of plasma treatment on spore properties is limited, especially at the single-cell level. In this study, Raman spectroscopy and phase-contrast microscopy were used to analyze CaDPA levels and kinetics of nutrient- and non-nutrient-germinant-induced germination of multiple individual spores of Bacillus subtilis that were treated by a planar CAP device. The roles of different plasma species involved in spore inactivation were also investigated. The knowledge obtained in this study will aid in understanding the mechanism(s) of spore inactivation by CAP and potentially facilitate the development of more effective and efficient plasma sterilization techniques in various applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of bacterial spore germination using integrated phase contrast microscopy, Raman spectroscopy, and optical tweezers.

We present a methodology that combines external phase contrast microscopy, Raman spectroscopy, and optical tweezers to monitor a variety of changes during the germination of single Bacillus cereus spores in both nutrient (l-alanine) and non-nutrient (Ca-dipicolinic acid (DPA)) germinants with a temporal resolution of approximately 2 s. Phase contrast microscopy assesses changes in refractility ...

متن کامل

Monitoring the wet-heat inactivation dynamics of single spores of Bacillus species by using Raman tweezers, differential interference contrast microscopy, and nucleic acid dye fluorescence microscopy.

Dynamic processes during wet-heat treatment of individual spores of Bacillus cereus, Bacillus megaterium, and Bacillus subtilis at 80 to 90°C were investigated using dual-trap Raman spectroscopy, differential interference contrast (DIC) microscopy, and nucleic acid stain (SYTO 16) fluorescence microscopy. During spore wet-heat treatment, while the spores' 1:1 chelate of Ca(2+) with dipicolinic ...

متن کامل

Monitoring the kinetics of uptake of a nucleic acid dye during the germination of single spores of Bacillus species.

Dormant bacterial spores do not take up and bind nucleic acid dyes in the spore core but readily take up such dyes when they are fully germinated. We present a methodology that combines fluorescence microscopy, phase contrast microscopy, and laser tweezers Raman spectroscopy to monitor the kinetics of uptake of the nucleic acid dye SYTO 16 during germination of individual Bacillus cereus and Ba...

متن کامل

Effects of cold atmospheric plasma on viability of breast (MDA-MB-231) and cervical (Hela) cancer cells

Introduction: There are many reports published about the use of cold atmospheric plasma in cancer treatment recently. In this way, the selective effects of cold plasma on the breast (MDA-MB-231) and cervical (Hela) cancer cells were studied as a new cancer treatment method. Materials and Methods: In this study, cold atmospheric pressure plasma was generated using a plasma jet reactor and also o...

متن کامل

Multiple-trap laser tweezers Raman spectroscopy for simultaneous monitoring of the biological dynamics of multiple individual cells.

We report the development of a multiple-trap laser tweezers Raman spectroscopy (LTRS) array for simultaneously acquiring Raman spectra of individual cells in physiological environments. This LTRS-array technique was also combined with phase contrast and fluorescence microscopy, allowing measurement of Raman spectra, refractility, and fluorescence images of individual cells with a temporal resol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Applied and environmental microbiology

دوره 82 19  شماره 

صفحات  -

تاریخ انتشار 2016